AV狼友国产在线观看_国产自91精品自在拍精选久久_男男暴菊Gay无套大学生_爱情岛论坛_国产精品久久国产精品99gif

首頁(yè) > 品牌 > 內(nèi)容頁(yè)

YOLOv8來(lái)啦 | 詳細(xì)解讀YOLOv8的改進(jìn)模塊!YOLOv5官方出品YOLOv8,必卷!

2023-01-09 19:58:43 來(lái)源:程序員客棧
點(diǎn)擊下方名片關(guān)注【集智書童】,后臺(tái)回復(fù)【YOLOv8】獲取YOLOv8源碼以及書童親自繪制的YOLOv8結(jié)構(gòu)圖原圖?;仡櫼幌耏OLOv5,不然沒(méi)機(jī)會(huì)了

這里粗略回顧一下,這里直接提供YOLOv5的整理的結(jié)構(gòu)圖吧:


【資料圖】

Backbone:CSPDarkNet結(jié)構(gòu),主要結(jié)構(gòu)思想的體現(xiàn)在C3模塊,這里也是梯度分流的主要思想所在的地方;PAN-FPN:雙流的FPN,必須香,也必須快,但是量化還是有些需要圖優(yōu)化才可以達(dá)到最優(yōu)的性能,比如cat前后的scale優(yōu)化等等,這里除了上采樣、CBS卷積模塊,最為主要的還有C3模塊(記住這個(gè)C3模塊哦);Head:Coupled Head+Anchor-base,毫無(wú)疑問(wèn),YOLOv3、YOLOv4、YOLOv5、YOLOv7都是Anchor-Base的,后面會(huì)變嗎?Loss:分類用BEC Loss,回歸用CIoU Loss。話不多說(shuō),直接YOLOv8吧!

直接上YOLOv8的結(jié)構(gòu)圖吧,小伙伴們可以直接和YOLOv5進(jìn)行對(duì)比,看看能找到或者猜到有什么不同的地方?

下面就直接揭曉答案吧,具體改進(jìn)如下:

Backbone:使用的依舊是CSP的思想,不過(guò)YOLOv5中的C3模塊被替換成了C2f模塊,實(shí)現(xiàn)了進(jìn)一步的輕量化,同時(shí)YOLOv8依舊使用了YOLOv5等架構(gòu)中使用的SPPF模塊;PAN-FPN:毫無(wú)疑問(wèn)YOLOv8依舊使用了PAN的思想,不過(guò)通過(guò)對(duì)比YOLOv5與YOLOv8的結(jié)構(gòu)圖可以看到,YOLOv8將YOLOv5中PAN-FPN上采樣階段中的卷積結(jié)構(gòu)刪除了,同時(shí)也將C3模塊替換為了C2f模塊;Decoupled-Head:是不是嗅到了不一樣的味道?是的,YOLOv8走向了Decoupled-Head;Anchor-Free:YOLOv8拋棄了以往的Anchor-Base,使用了Anchor-Free的思想;損失函數(shù):YOLOv8使用VFL Loss作為分類損失,使用DFL Loss+CIOU Loss作為分類損失;樣本匹配:YOLOv8拋棄了以往的IOU匹配或者單邊比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。1、C2f模塊是什么?與C3有什么區(qū)別?

我們不著急,先看一下C3模塊的結(jié)構(gòu)圖,然后再對(duì)比與C2f的具體的區(qū)別。針對(duì)C3模塊,其主要是借助CSPNet提取分流的思想,同時(shí)結(jié)合殘差結(jié)構(gòu)的思想,設(shè)計(jì)了所謂的C3 Block,這里的CSP主分支梯度模塊為BottleNeck模塊,也就是所謂的殘差模塊。同時(shí)堆疊的個(gè)數(shù)由參數(shù)n來(lái)進(jìn)行控制,也就是說(shuō)不同規(guī)模的模型,n的值是有變化的。

其實(shí)這里的梯度流主分支,可以是任何之前你學(xué)習(xí)過(guò)的模塊,比如,美團(tuán)提出的YOLOv6中就是用來(lái)重參模塊RepVGGBlock來(lái)替換BottleNeck Block來(lái)作為主要的梯度流分支,而百度提出的PP-YOLOE則是使用了RepResNet-Block來(lái)替換BottleNeck Block來(lái)作為主要的梯度流分支。而YOLOv7則是使用了ELAN Block來(lái)替換BottleNeck Block來(lái)作為主要的梯度流分支。

C3模塊的Pytorch的實(shí)現(xiàn)如下:

classC3(nn.Module):#CSPBottleneckwith3convolutionsdef__init__(self,c1,c2,n=1,shortcut=True,g=1,e=0.5):#ch_in,ch_out,number,shortcut,groups,expansionsuper().__init__()c_=int(c2*e)#hiddenchannelsself.cv1=Conv(c1,c_,1,1)self.cv2=Conv(c1,c_,1,1)self.cv3=Conv(2*c_,c2,1)#optionalact=FReLU(c2)self.m=nn.Sequential(*(Bottleneck(c_,c_,shortcut,g,e=1.0)for_inrange(n)))defforward(self,x):returnself.cv3(torch.cat((self.m(self.cv1(x)),self.cv2(x)),1))

下面就簡(jiǎn)單說(shuō)一下C2f模塊,通過(guò)C3模塊的代碼以及結(jié)構(gòu)圖可以看到,C3模塊和名字思路一致,在模塊中使用了3個(gè)卷積模塊(Conv+BN+SiLU),以及n個(gè)BottleNeck。

通過(guò)C3代碼可以看出,對(duì)于cv1卷積和cv2卷積的通道數(shù)是一致的,而cv3的輸入通道數(shù)是前者的2倍,因?yàn)閏v3的輸入是由主梯度流分支(BottleNeck分支)依舊次梯度流分支(CBS,cv2分支)cat得到的,因此是2倍的通道數(shù),而輸出則是一樣的。

不妨我們?cè)倏匆幌耏OLOv7中的模塊:

YOLOv7通過(guò)并行更多的梯度流分支,放ELAN模塊可以獲得更豐富的梯度信息,進(jìn)而或者更高的精度和更合理的延遲。

C2f模塊的結(jié)構(gòu)圖如下:

我們可以很容易的看出,C2f模塊就是參考了C3模塊以及ELAN的思想進(jìn)行的設(shè)計(jì),讓YOLOv8可以在保證輕量化的同時(shí)獲得更加豐富的梯度流信息。

C2f模塊對(duì)應(yīng)的Pytorch實(shí)現(xiàn)如下:

classC2f(nn.Module):#CSPBottleneckwith2convolutionsdef__init__(self,c1,c2,n=1,shortcut=False,g=1,e=0.5):#ch_in,ch_out,number,shortcut,groups,expansionsuper().__init__()self.c=int(c2*e)#hiddenchannelsself.cv1=Conv(c1,2*self.c,1,1)self.cv2=Conv((2+n)*self.c,c2,1)#optionalact=FReLU(c2)self.m=nn.ModuleList(Bottleneck(self.c,self.c,shortcut,g,k=((3,3),(3,3)),e=1.0)for_inrange(n))defforward(self,x):y=list(self.cv1(x).split((self.c,self.c),1))y.extend(m(y[-1])forminself.m)returnself.cv2(torch.cat(y,1))

SPPF改進(jìn)了什么?

這里講解的文章就很多了,這里也就不具體描述了,直接給出對(duì)比圖了

上圖中,左邊是SPP,右邊是SPPF。

PAN-FPN改進(jìn)了什么?

我們先看一下YOLOv5以及YOLOv6的PAN-FPN部分的結(jié)構(gòu)圖:

YOLOv5的Neck部分的結(jié)構(gòu)圖如下:

YOLOv6的Neck部分的結(jié)構(gòu)圖如下:

我們?cè)倏碮OLOv8的結(jié)構(gòu)圖:

可以看到,相對(duì)于YOLOv5或者YOLOv6,YOLOv8將C3模塊以及RepBlock替換為了C2f,同時(shí)細(xì)心可以發(fā)現(xiàn),相對(duì)于YOLOv5和YOLOv6,YOLOv8選擇將上采樣之前的1×1卷積去除了,將Backbone不同階段輸出的特征直接送入了上采樣操作。

Head部分都變了什么呢?

先看一下YOLOv5本身的Head(Coupled-Head):

而YOLOv8則是使用了Decoupled-Head,同時(shí)由于使用了DFL 的思想,因此回歸頭的通道數(shù)也變成了4*reg_max的形式:

對(duì)比一下YOLOv5與YOLOv8的YAML損失函數(shù)

對(duì)于YOLOv8,其分類損失為VFL Loss,其回歸損失為CIOU Loss+DFL的形式,這里Reg_max默認(rèn)為16。

VFL主要改進(jìn)是提出了非對(duì)稱的加權(quán)操作,F(xiàn)L和QFL都是對(duì)稱的。而非對(duì)稱加權(quán)的思想來(lái)源于論文PISA,該論文指出首先正負(fù)樣本有不平衡問(wèn)題,即使在正樣本中也存在不等權(quán)問(wèn)題,因?yàn)閙AP的計(jì)算是主正樣本。

q是label,正樣本時(shí)候q為bbox和gt的IoU,負(fù)樣本時(shí)候q=0,當(dāng)為正樣本時(shí)候其實(shí)沒(méi)有采用FL,而是普通的BCE,只不過(guò)多了一個(gè)自適應(yīng)IoU加權(quán),用于突出主樣本。而為負(fù)樣本時(shí)候就是標(biāo)準(zhǔn)的FL了??梢悦黠@發(fā)現(xiàn)VFL比QFL更加簡(jiǎn)單,主要特點(diǎn)是正負(fù)樣本非對(duì)稱加權(quán)、突出正樣本為主樣本。

針對(duì)這里的DFL(Distribution Focal Loss),其主要是將框的位置建模成一個(gè) general distribution,讓網(wǎng)絡(luò)快速的聚焦于和目標(biāo)位置距離近的位置的分布。

DFL 能夠讓網(wǎng)絡(luò)更快地聚焦于目標(biāo) y 附近的值,增大它們的概率;

DFL的含義是以交叉熵的形式去優(yōu)化與標(biāo)簽y最接近的一左一右2個(gè)位置的概率,從而讓網(wǎng)絡(luò)更快的聚焦到目標(biāo)位置的鄰近區(qū)域的分布;也就是說(shuō)學(xué)出來(lái)的分布理論上是在真實(shí)浮點(diǎn)坐標(biāo)的附近,并且以線性插值的模式得到距離左右整數(shù)坐標(biāo)的權(quán)重。

樣本的匹配

標(biāo)簽分配是目標(biāo)檢測(cè)非常重要的一環(huán),在YOLOv5的早期版本中使用了MaxIOU作為標(biāo)簽分配方法。然而,在實(shí)踐中發(fā)現(xiàn)直接使用邊長(zhǎng)比也可以達(dá)到一阿姨你的效果。而YOLOv8則是拋棄了Anchor-Base方法使用Anchor-Free方法,找到了一個(gè)替代邊長(zhǎng)比例的匹配方法,TaskAligned。

為與NMS搭配,訓(xùn)練樣例的Anchor分配需要滿足以下兩個(gè)規(guī)則:

正常對(duì)齊的Anchor應(yīng)當(dāng)可以預(yù)測(cè)高分類得分,同時(shí)具有精確定位;不對(duì)齊的Anchor應(yīng)當(dāng)具有低分類得分,并在NMS階段被抑制?;谏鲜鰞蓚€(gè)目標(biāo),TaskAligned設(shè)計(jì)了一個(gè)新的Anchor alignment metric 來(lái)在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里來(lái)動(dòng)態(tài)的優(yōu)化每個(gè) Anchor 的預(yù)測(cè)。Anchor alignment metric:

分類得分和 IoU表示了這兩個(gè)任務(wù)的預(yù)測(cè)效果,所以,TaskAligned使用分類得分和IoU的高階組合來(lái)衡量Task-Alignment的程度。使用下列的方式來(lái)對(duì)每個(gè)實(shí)例計(jì)算Anchor-level 的對(duì)齊程度:

s 和 u 分別為分類得分和 IoU 值,α 和 β 為權(quán)重超參。從上邊的公式可以看出來(lái),t 可以同時(shí)控制分類得分和IoU 的優(yōu)化來(lái)實(shí)現(xiàn) Task-Alignment,可以引導(dǎo)網(wǎng)絡(luò)動(dòng)態(tài)的關(guān)注于高質(zhì)量的Anchor。

Training sample Assignment:

為提升兩個(gè)任務(wù)的對(duì)齊性,TOOD聚焦于Task-Alignment Anchor,采用一種簡(jiǎn)單的分配規(guī)則選擇訓(xùn)練樣本:對(duì)每個(gè)實(shí)例,選擇m個(gè)具有最大t值的Anchor作為正樣本,選擇其余的Anchor作為負(fù)樣本。然后,通過(guò)損失函數(shù)(針對(duì)分類與定位的對(duì)齊而設(shè)計(jì)的損失函數(shù))進(jìn)行訓(xùn)練。

參考

[1].https://github.com/uyolo1314/ultralytics.[2].https://github.com/meituan/YOLOv6.[3].https://arxiv.org/abs/2209.02976.[4].https://github.com/PaddlePaddle/PaddleDetection.[5].https://github.com/PaddlePaddle/PaddleYOLO.[6].https://github.com/open-mmlab/mmyolo.

推薦閱讀

書童改進(jìn) | YOLOv5之架構(gòu)改進(jìn)、樣本匹配升級(jí)、量化部署、剪枝、自蒸餾以及異構(gòu)蒸餾

目標(biāo)檢測(cè)模型設(shè)計(jì)準(zhǔn)則 | YOLOv7參考的ELAN模型解讀,YOLO系列模型思想的設(shè)計(jì)源頭

目標(biāo)檢測(cè)Trick | SEA方法輕松抹平One-Stage與Two-Stage目標(biāo)檢測(cè)之間的差距

掃描上方二維碼可聯(lián)系小書童加入交流群~

想要了解更多前沿AI視覺(jué)感知全棧知識(shí)【分類、檢測(cè)、分割、關(guān)鍵點(diǎn)、車道線檢測(cè)、3D視覺(jué)(分割、檢測(cè))、多模態(tài)、目標(biāo)跟蹤、NerF】、行業(yè)技術(shù)方案【AI安防、AI醫(yī)療、AI自動(dòng)駕駛】、AI模型部署落地實(shí)戰(zhàn)【CUDA、TensorRT、NCNN、OpenVINO、MNN、ONNXRuntime以及地平線框架等】,歡迎掃描下方二維碼,加入集智書童知識(shí)星球,日常分享論文、學(xué)習(xí)筆記、問(wèn)題解決方案、部署方案以及全棧式答疑,期待交流!

x 廣告
x 廣告

Copyright ©  2015-2022 亞洲導(dǎo)購(gòu)網(wǎng)版權(quán)所有  備案號(hào):豫ICP備20022870號(hào)-9   聯(lián)系郵箱:553 138 779@qq.com